AD-A143 233 NAMING IN PROGRAMMINGCU) NAVAL POSTGRADUATE SCHOOL
MONTEREY CA N C ROWE OCT 84 NPS52-84-917

UNCLRSSIFIED F/G 972

fuuen

L il niat e ~ o SRR SR S S A A o L R S oA L T -‘T

$
N

-

i |0 &I Mz
~ flio £
| =LK
] ||||| T
g = e
: 1.2

: 22 it e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS (964 A

AD-A149 233

o

r
i

Tt

ulle

AN S

NPS52-84-017 g

NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

NAMING IN PROGRAMMING

Neil C. Rowe

October 1984

Approved for public release, distribution unlimited

Prepared for:

Chief of Naval Research
Ariington, VA 22217

84 12 2:

o~

-
e i, -~ - N .
s TUREAY VUK WU S

v
»

CaliCe

A — ST

~y

v

al

Itie B S g 4
- P

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Commodore R. H. Shumaker D. A. Schrady J
Superintendent Provost

The work reported herein was supported in part by the Foundation
Research Program of the Naval Postgraduate School with funds provided by
the Chief of Naval Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Nl Ty g

NEIL C. ROWE —
Associate Professor of
Computer Science

Reviewed by: Released by:

.-//41 sy L |
£ J. MAC LENNA KNEACE T. MARSHALY
Department of Computer Science Dean of Information and

Policy Sciences

—— e —————

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

[T, REPORT NUMBER
NPS52-84-017

2. GOVY ACCESSION NO}L RECIPIENT'S CATALOG NUMBER

& TITLE (and Subtitle)

L0 A177 357

8. TYPE OF REPORT & PERIOD COVERED

Naming in programming

6. PERFORMING ORG. REPOAT NUMBER

7. AUTHOR(Y)

Neii C. Rowe

S. CONTRACY OR GRANT NUI.il{l}

$. PERFORMING ORGANIZATION NAME AND ADDRESS

Naval Postgraduate School
Monterey, CA 93943

0. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBENS ' "

61152N; RR000-01-10
N0001484WR41001

11. CONTROLLING OFFICE NAME AND ADDRESS
Chief of Naval Research

12. REPORT DATE

October 1984

Ariington, VA 22217

8. NUMEEAR OF =a223
18

T4, MONITORING AGENCY NAME & ADDRESS(if different from Controlling Ofliee)

18. SECURITY CLASS. (of thie repert)

unclassified

8a. DlEkA!SIDICATl°N7 ODOWNGRADING
SCHNEDULE

[16. OISTRIBUTION STATEMENT (of this Report)

17. DISTRIBUTION STATEMENT (of the sbatract entered in Bleck 20, Il dilisrent rem Report)

18. SUPPLEMENTARY NOTES

19. XEY WORDS (Continue on reverse side If necessary and identity by blech number)

structured programming

programming languages, identifiers, names, education -- computer science,

20. ABSTRACT (Continue en reverse side If & number)
in programming.
program text clearer.
between similar procedures.

y and identity by BI

activity.

Names do not affect program performance, but can make

In particular, they can bring out family relationships
I discuss common obstacles to good naming.
then give some examples of good naming in the language Logo, a language in
which naming (with the TO construct) is a central metaphor for the programmer's
The work reported herein was supported in part by the Foundation
Research Program of the Naval Postgraduate School with funds

Good names are important

I

(continued)

n——

LU I WP

FOnRm
JAN N

0D, 1473

CEOtTION OF ' NOV 68 (1S QEsOLETE
$/N 0102- LF-014- 6601

unclassified
SECURITY CLASSIFICATION OF THIS PAGE (Phen Derte :0-00

[SR
WL S

.....

MR AT YL U IR IS B S MR LA i ot Rty (S A S St Bt it Aot Sod it Sl SRS AL Min MRl At~ okt v it Bad s ol B gbat gyl gy e s AF S8 o m ol

unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Continuation of block 20
provided by the Chief of Naval Research.

This paper is to appear in Computers in the Schools.

L. _,

PY .-
"~ RS
' §
- . &l
@ b

L

’ ’ <L F. . .

S1 0102: 18- 014- 4601 unclassified
‘ SECURITY CLASSIFICATION OF THIS PAGE(When Dats Entered)

Sr T T Te Ta T e T e T Te e e e e -

D ol Bt etk et Jauts 2t Bl 0B 1 ST W T RN Wy W T WUWN .‘.‘~"\—'.‘m

Naming in Programming

Neil C. Rowe, Ph.D.

Department of Computer Science
Code 52
Naval Postgraduate School
Monterey, California 93943

\ ABSTRACT ’/“ .%«,7/40(-

Good names are important in programming. Names do not affect program
performance, but can make program text clearer. In garticular, they can bring
out family relationships between similar procedures.] discuss common obstacles
to good naming. I't‘%ﬁx give some examples of good naming in the language
Logo, a language in which naming {with the TO construct} is a central metaphor
for the programmer’s activity.

The work reported herein was supported in part by the Foundation Research
Program of the Naval Postgraduate School with funds provided by the Chief of -
Naval Research. This paper is to appear in Computers in the Schools.

\

Names are an essential but underrated aspect of programming. Many programming
and programming language issues can be addressed in the study of naming.

1. INTRODUCTION

By "names" I mean the identifiers (character strings) used to distinguish (a) program
units (procedures, subroutines, blocks, loops, etc.) and (b) variables. I shall particu-
larly emphasize procedure names in this discussion, since they are usually the most
important. The choosing of names for a given program, what might be called "name
programming", is an issue of program semantics as opposed to syntax. Program com-
ments are also a kind of semantics, but a less satisfactory one: a name’s denotations
and connotations are tightly bound to that name, and are invoked every time that
name is used.

1 dispute the common view that "names are arbitrary and a matter of taste" or "it
doesn’t really matter what you call things, so long as they work." Just as with the
English language, there are always options for names, but these options are small com-
pared to the enormous number of limiting constraints imposed by syntactic and
semantic conventions. To the extent that programming is a social activity involving
more than one programmer, conventional names must be agreed on -- and the closer
names are to English, with occasional exceptions, the easier will be comprehension by
all concerned. And names can be "right" or "wrong": take for instance a programmer
, who labels a square root procedure SQUARE and a square procedure SQUAREROOT
' -- the names are not so much "inappropriate" as wrong.

P e - T A e e e e

. . o R T - PR
TS VI RGPS N LY WY, WA

o A < comran wa cum S A AR SEANEA LRCRn S RACL S IS S A R S
Py T . :

1.1. Children and Naming

) It’s interesting to observe the naming problems of children when programming. Here
' are a teacher's notes about sixth graders using Logo, plus some extra software, to
make drawings (from Goldenberg, 1976):

"Item: John finishes drawing a picture and wants to 'teach’ the turtle how to do it by itself.

The computer types WHAT IS THE NAME OF THE PROCEDURE? and John sighs and
_ says, "Oh, no, not another name!’ He says it with amusement, but is clearly troubled by the
E difficulty of finding a name. Robert, too, often says, 'What should 1 name that?’ The

‘should’ instead of 'what’ is significant. Sally says, 'l don’t know what to call that?’"

"ltem: Robert began picking up lots of local words for naming his procedures. His MAC
. truck may have been influenced somewhat by having heard of Mack Trucks, but Robert got
the name directly from our Project MAC sign. Many kids immortalize siblings and class-
mates by naming procedures after them..."

"Item: Theme names' Robert was creating an animation of a truck that drives into a wall

and crumples and then keeps backing up and battering the wall over and over again. The

original truck name was MAC. PUTTPUTT, CRASH, and SMASH were also parts of the

program, but one cannot tell by the names alone what each part does. The fact that these

names were still really somewhat arbitrary for Robert can be seem from the other names of

procedures in the overall program: OZ, CA, COB, TV, SCRIB, JO, HOJO, and CAT. Sally

used THINKER, ROBOT, EARLESS, BODY, BODYALL, ARMLESS and SLOWPOKE *
for her robot, but again, even the ones like ARMLESS, EARLESS, BODY, and BODYALL,

which suggest stages of development, were not consistently used that way."

'pages 1-2|

Adults are just grown up children, and it’s not so much that these problems don’t arise with
adults as it is that adults conceal problems better. Too long procedures may be evidence for a
- naming hangup, as may be strongly numeric (e.g. P63RS007) and allusive names (e.g. SHRDLU).

\ SR

1.2. Reason 1 for Poor Naming: Existing Language Limitations

Unfortunately, some current computer languages have length limitations on names.
This is more tolerable and widespread at the systems programming level, but some
programming languages are still afflicted with this malady. Length limitations on

y—

r

E names save a mere one extra pointer in storage, which is not worth the sacrifice in
g clarity.

- 1.3. Reason 3 for Poor Naming: Lack of Naming Aids

9 -

: Even when the length of names is not limited in a language, the lack of positive aids to

. the use of them may be seriously constraining. Typing of names is a time-consuming

y part of programming. If longer names are to be used in programming, the amount of
[typing will be increased unless abbreviations and other aids are used. We will discuss
b such aids later in this p~per.

b,

d

¢

L’.

)

e et
. P . -~ - - L et a
a e, R e} - s e L .
ST . . B N .

- R R R TRT O TNAERE Ve T LT T RN, N ML W e LT T ETRN S Bt _SRalen 2 & a7
- e - . N

A AP I A Al - Al "Wl Miadt et PRI TVTwETYY

- 4.

1.4. Reason 3 for Poor Naming: Legacy of Mathematics

Programming’s origins are in mathematics, where one-letter variable names are the
norm. Most computer applications today have nothing to do with mathematics, so we
no longer need respect this convention. Besides, the reason for one-letter names in
mathematics seems to be the desire to make multiplication a "default" operation (so
ABC means A times B times C). This makes sense for math since maultiplication is
common. But for most programming, "word construction" makes a better default
operation.

1.5. Reason 4 for Poor Naming: Ideas That Are Hard to Articulate

The most basic reason for poor naming may be that certain ideas are difficult to put in
words. (Rowe, 1980) discusses this in regard to the teaching of grammar, but another
good example is music. Suppose one represents a musical composition as a list of tri-
ples (containing pitch frequency, note starting time, and note duration), and suppose
there are a thousand such triples (notes) in the composition. We can usually figure
out what the main parts of the composition are and divide it into procedural parts.
But what do we name those parts? What music seems to be "about" is hard to put
into words. This seems to be true of things that are time-critical: people have a hard
time analyzing things that happen once and are then over.

But assigning names is part of what science is about. Being forced to think up a name L]
is often a good thing. For instance, in teaching Logo programming I have required

student programs to be no more than five lines long. This is occasionally awkward,

but it does seem to encourage the development of naming skills as well as the use of

structured programming. So it could be that the difficulties one has in finding words

to describe musical thoughts is more a reflection on the primitive stage of musical

analysis (which is, after all, not a high priority research area) than of any inherent

naming limitations.

2. SIMPLE DESCRIPTIVE NAMES

What is good naming? Clearly it is using names that are evocative, and which conjuare
up distinctive characteristics of what is being named. For procedure names this usu-
ally means finding some English word that represents the primary accomplishment of
the procedure. For instance, a procedure that draws a triangle could be called TRI-
ANGLE, a procedure that finds item number n in a list could be called ITEM, and a
procedure that generates and prints out sentences could be called SENTENCES.
When naming variables, a variable that is a number could be called NUMBER, and a
variable that is a list that represents a sentence could be called SENTENCE. Names
of more than one word can be made with punctuation characters like the period in
Logo. For example, a Logo procedure that draws a big triangle could be
F BIG.TRIANGLE, and a Logo procedure that generates random sentences could be
t_ called RANDOM.SENTENCES.

Certain names may be better in certain languages. For example, there is a bias
towards verbs as procedure names in Logo. This is probably because of the u-e of the
word TO.

. But description is not the whole story. A good name should not merely characterize
; something, but should also be the most general characterizsation and no more. For

. DY . KRR - LI - , - .
"~ Y S W RN AT AP LA, U, PN WAL R VAL U PR AL U TR i S T e S RS I

T
. K

instance, consider the following program in Logo (Abelson, 1982). This classic pro-
gram draws a triangle of a given size. To run it, the user types the word TRIANGLE,
a space, a number representing the desired size, and s carriage retum.

TO TRIANGLE :SIDE
FORWARD :SIDE
RIGHT 120
FORWARD :SIDE
RIGHT 120
FORWARD :SIDE
RIGHT 120

END

Young students using Logo will tend to name this procedure ROOF or give it the
name of some other concrete object. While this does capture a valuable use of such a
procedure, it does not characterize the multitude of other legitimate uses (as a moun-
tain, say). A better name (for adult programmers, at least) would be an abstract,
geometrical one like TRIANGLE. After all, the shape drawn on the video screen is
merely three thin lines; there are no shingles on this ROOF. On the other hand, we
don’t want to get too general: the name SHAPE would describe this procedure, but
would apply to squares and other shapes. So good naming involves choosing just the
right level of generality. The approximate level does, however, vary with the sophisti-
cation of the programmer and the likelihood he will reuse it for a different purpose.
ROOF would probably be a good name for nine-year-olds, but not for college students.

Good naming is important in other languages such as Smalltalk (Goldberg and Rob-
son, 1988). The issues concerning naming are similar for Smalltalk except that more
system-defined names are already provided.

3. COMPOSITE NAMES AND NAME FAMILIES

From the preceding, we see that good naming involves aesthetic issues. A good name
evokes a distinctive picture in a person’s head, and one can can be an art critic. But
there is another, more formulable aspect of names: their characterization of relation-

ships and "family resemblances" between procedures. In this section we will investi-
gate this.

3.1. The ITEM Family

Consider the following Logo procedure (in the Apple Logo dialect, as will be the rest of
our examples):

TO ITEM :N :L

TEST:N=1

IFTRUE OUTPUT FIRST :L

IFFALSE OUTPUT ITEM (:N - 1) (BUTFIRST :L)
END

Read the first line as "Get item number N of list L", interpreting the N and the L to be
names of stereotypical integer and list parameters, respectively. So if you type
PRINT ITEM 3 [TOM DICK HARRY JOE]| it would print "HARRY". The use of the
one-letter variable names N and L could be a little confusing -- perhaps we should
have called them NUMBER and LIST -- but has the advantage of distinguishing them
well from procedure names. Long variable names are better for special-purpose

. P .. c e R T
—_— L g B e v te Tt . o . - Y .
------ Ve . - ® s, A - . L . .
ERARN SRR ORI R PO SN WL L W T LI, T S Y DR W 37 o0 S P doao

-~

L. . RS R
PRI, N IURIDIRCIIL. WP . SO GLY |

A e e s ety et ee (S A StiaiCi SR IS sl Rl FIETRTR T e T e e e L e
.

-6-

variables, which require a good self-description.

ITEM is one of a whole "family" of related procedures:

TO RUN.ITEM :N :L

TEST:N =1

IFTRUE RUN FIRST :L

IFFALSE RUN.ITEM (:N - 1) (BUTFIRST :L)
END

TO FIRST.N.ITEMS :N :L

TEST :N = 1

IFTRUE OUTPUT (LIST FIRST :L)

IFFALSE OUTPUT SENTENCE (FIRST :L)
(FIRST.N.ITEMS (:N - 1) (BUTFIRST :L))

END

TO RANDOM.ITEM :L

TEST 0 = RANDOM LENGTH :L

IFTRUE OUTPUT FIRST :L

IFFALSE OUTPUT RANDOM.ITEM BUTFIRST :L
END

These procedure names can be read as:
"RUN item number N of list L."
"Get first N items of list L."
"Get a random item from list L."

For example:

turns the turtle right 90 degrees,

PRINT FIRST.N.ITEMS 8 [TOM DICK HARRY JOE BILL]
prints the list [TOM DICK HARRY]|, and

PRINT RANDOM.ITEM (123456738 9]
prints a random digit.

length of a list L, defined as follows:

. TO INVERSE.ITEM I :L
g TEST :I = FIRST 'L
¢ IFTRUE OUTPUT 1

. IFFALSE OUTPUT (1 + INVERSE.ITEM :I (BUTFIRST :L))
) END
':_.

LA S e L e T

RUN.ITEM 8 [[FORWARD 10| [FORWARD 25| [RIGHT 90| [RIGHT 180]]

The LENGTH procedure mentioned in RANDOM.ITEM is a recursive procedure that counts the

TO LENGTH :L
S IF :.L = || THEN OUTPUT 0 ELSE OUTPUT (1 + LENGTH BUTFIRST :L)
- END

P Note the basic structural similarity of all these procedures to ITEM. This is mirrored by the
. "adjective-noun" form of the names, where the noun is ITEM or ITEMS and the adjective
[describes what kind of an ITEM variant the procedure is. Here is an inverse ITEM:

9
i\ _____ . . ‘e - - e
- L . Lt e - ey, . L. e et 2 e a .
. ‘- y el oAl [P IRV RIPIL PP I AP S L TP W T Y PO AT VI G S S S A - b
m®a"a el o _a’aPa o TS S W -

F- n el AL e ad A b Al & G4 S ATSN A RN SO

3

»

-~y e~) Rk S 4 "
Cater 2N i g MR
R . s . St e

I

T,y

V) SRR

Falh g
L

' el

 ex
s Moo

The first line can be read as "Do the inverse of the situation where the number N item of list L is
I." So PRINT INVERSE.ITEM 10 {5 10 25 50 100] prints the number 2, since 10 is the second
item of the list. Note the similarity in form between INVERSE.ITEM and ITEM.

3.2. The PROPERTY Family

Consider now a analogous family of procedures operating on a list of pairs (a "pro-
perty list") rather than a regular list:

TO PROPERTY :1:PL

TEST :I = FIRST FIRST :PL

IFTRUE OUTPUT LAST FIRST :PL

IFFALSE OUTPUT PROPERTY :I (BUTFIRST :PL)
END

TO RUN.PROPERTY :I:PL

TEST :I = FIRST FIRST :PL

IFTRUE RUN LAST FIRST :PL

IFFALSE RUN.PROPERTY :I (BUTFIRST :PL)
END

TO FIRST.N.PROPERTIES :N :PL

TEST:N =1

IFTRUE OUTPUT (LIST LAST FIRST :PL)

IFFALSE OUTPUT SENTENCE (LAST FIRST :PL)
(FIRST.N.PROPERTIES (:N - 1) (BUTFIRST :PL))

END

TO RANDOM.PROPERTY :PL
TEST 0 = RANDOM LENGTH :PL
IFTRUE OUTPUT LAST FIRST :PL

IFFALSE OUTPUT RANDOM.PROPERTY BUTFIRST :PL
END

Here I represents an "item" variable, and PL a pair list. Note we can also have an
inverse:

TO INVERSE.PROPERTY :I :PL

TEST :I = LAST FiRST :PL

IFTRUE OUTPUT FIRST FIRST :PL

IFFALSE OUTPUT INVERSE.PROPERTY :I (BUTFIRST :PL)
END

The names of these procedures specify precise analogies to the ITEM family pro-
cedures. We can read the five procedure names asfollows:
"Get property I of property (pair) list PL."
"RUN property I of property list PL."
"Get the values of the first N properties in property list PL."
"Get a random property value from property list PL."
"Get the property name in property list PL whose value is I."
Some examples:
PRINT PROPERTY 3 {{SUNNY .5| [CLOUDY .8; PARTLYCLOUDY .2' 'RAIN .1}
prints the number .2

RUN.PROPERTY 2 [[SUNNY [CLEARSCREEN PRINT GET OUTDOORS/|| 'RAIN

- . PR P I . . - e - R . RRATOTN
PRI RO, P PN - S ot PR SV TEU PR PR Ve A s PO YN g Sy

— T T™
e, st e 2i e T T T YT DY WY W T TR W TV TN TR Y VTR T TR L VT
- - gy g A

PRINT NICE DAY TO BE INSIDE!}}]
prints ‘NICE DAY TO BE INSIDE;

FIRST.N.PROPERTIES 2 {[SUNNY .5 CLOUDY .3; PARTLYCLOUDY .2 [RAIN .1
prints [.5 .3]

RANDOM.PROPERTY ! SUNNY 5/ CLOUDY .3 [PARTLYCLOUDY .2| RAIN .1}| !
gives a random number from .5, .3, .2, and .1

INVERSE.PROPERTY .3 [SUNNY .5/ . CLOUDY .3} PARTLYCLOUDY .2} (RAIN .1/
prints CLOUDY

3.3. The PANDOM Family

%‘ The above two families can be thought of as "parallel" since for each procedure in one

there is a corresponding procedure in the other. Families can also be "o~ al" to
one another, "intersecting" at a single procedure. For instance, the R i mily
of which we have seen the members RANDOM.ITEM and RAND/ f#ROPERTY
also includes a procedure to choose a random bunch of items from a list:

TO RANDOM.SUBSET :L

IF :L = || THEN OUTPUT ||

TEST 0 = RANDOM 1

IFTRUE OUTPUT SENTENCE (LIST FIRST :L) (RANDOM.SUBSET BUTFIRST :L)
IFFALSE OUTPUT RANDOM.SUBSET BUTFIRST :L

END

It also includes more numerical procedures, like this random number generator that
tends to return numbers at the middle of its range more often than other numbers:

TO BIASED.RANDOM :N
OUTPUT QUOTIENT ((RANDOM :N) + (RANDOM :N)) 2
END

And it includes more basic procedures as well, like the built-in function RANDOM.
Note that the names of procedures in these families, having the "adjectives" in com-
mon between their names, have less syntactic similarity as opposed to underlying
"semantic" similarity. For the RANDOM family this underlying semantic similarity is T
the notion of pseudo-random choice among options.

Just as RANDOM.PROPERTY relates to PROPERTY, RANDOM.SUBSET relates
to a procedure SUBSET, which gives the subset of items in a set having some particu-
lar value (which could be useful for counting those values):

TO SUBSET :I :L

IF :L = [| THEN OUTPUT]

TEST :1 = FIRST :L

IFTRUE OUTPUT SENTENCE (FIRST :L) (SUBSET :I (BUTFIRST :L))
IFFALSE OUTPUT SUBSET :I (BUTFIRST :L)

END

So this and RANDOM.SUBSET form a family, which we might call the SUBSET

family. But its analogous intersections with the RUN, FIRST.N, and INVERSE fami-
lies do not seem to be meaningful.

Rl i o et

i Sed

\JA.L'.."A_;.‘\“ . “al

r! e gt SN

< .

3

r .

" e
a

b

A

e

3

3

L

3

3

a

"y
0

vevre

CRCSEANE A art e 4 g S Ar A S gt N i nuds And il A M Mgt g a1

3.4. The Test-Operator Family

RANDOM.ITEM relates to ITEM in the same way that RANDOM itself (the pro-
cedure that generates random numbers) might relate to a procedure IDENTITY that
merely outputs its single argument. (Unfortunately we cannot give procedures names
that are zero characters long, as the analogy between the names might suggest, so we
compromise on "IDENTITY".) RANDOM.ITEM relates to RUN.ITEM in the same
way that RANDOM relates to RUN. So we can create a new family including basic
"test functions" like IDENTITY, RUN, and RANDOM, whose names are prefixes
stripped off the corresponding members of the ITEM or PROPERTY families. Unfor-
tunately there is no counterpart in this family for FIRST.N.ITEMS and
INVERSE.ITEM.

$.5. Diagram of the Families

Figure 1 shows the families of procedures we have mentioned so far. (Intersection
points not marked represent nonmeaningful combinations.)

3.6. Version Families

There is also a "third dimension" for which we can build families. In the third dimen-
sion are procedures that accomplish the same thing in different ways. These pro-
cedures can be denoted by suffixes on the procedure name. For instance, we’ve
assumed a "default" of recursive procedures; we could also write ITEM iteratively, and
call it ITEM.ITERATIVE. We could also have a ITEM.FLOATING that took a
floating-point number for N and rounded it to the nearest integer to get an index into
a list. Or we could just have different "versions" (perhaps with bugs) of the same gen-
eral structure:

TO ITEM.3 :N :L

TEST:N > 1

IFTRUE OUTPUT FIRST :L

IFFALSE OUTPUT ITEM.3 (:N - 1) (BUTFIRST :L)
END

The version identifier can be put at the end of the name, after the other suffixes, as is
done with file names in Interlisp.

3.7. Hierarchies Vs. Families

This infinite multi-dimensional structure is independent of the ways procedures are
related hierarchically in programs. Rather, it is an abstraction showing where names
originate, a Platonic supermarket of ideal procedures. In fact, it is a good idea for
names of procedures in programs to be mostly unrelated, to bring out differences in
functions. For example, we could have written RANDOM.ITEM non-recursively by a
call to ITEM, using the LENGTH procedure defined above:

TO RANDOM.ITEM.COMPOSED :L
OUTPUT ITEM (1 + (RANDOM LENGTH :L)) :L
END

But this is different in form from our previous RANDOM.ITEM, and demands a name
that calls attention to this, as for instance RAND.ITEM.

e L . B R It Tl T Tl R A A T R —r -
T T B Kt

RSN Sl saas aPl ar e

a
#

o e,
l.‘.l.‘ .

- 10 -

.

3.8. Multiple Names

L At D it e
«

[AN LR ARl ity e Sl sl
P N . ‘ R
. . . RO

Names need not be single. Under different circumstances, a procedure may be per-
forming a different function, and deserve a different name. An example would be the
use of TRIANGLE for both roofs and mountains. Or a specific purpose in a program
may be served by a quite general procedure, and a more specific name can explain
what’s going on. But this should not be overdone or it may obscure underlying simi-
larities of procedure usage.

4. RECOMMENDATIONS FOR PROGRAMMING LANGUAGES

Our above discussion suggests that programming languages, especially those used by
students, should provide more support for longer, more descriptive names. I offer a
few suggestions.

e
o
RN

4.1, Spelling Correction

The probability of a spelling error is approximately proportional to the length of
words used. Hence automatic spelling correction is essential to support programming
with long names. This is not as hard as is often believed; several good recent algo-
rithms can make it quite fast, and microcoding allows further speedup. Interlisp, for
instance, has automatic spelling correction, but most versions of Logo do not.

T Y

4.2. Abbreviation Expansion

Going a step further, we can apply the same ideas to abbreviations, words purposely
"misspelled" in a way 80 as to make their lengths considerably shorter. Abbreviations
tend not to be just random deletions of letters: letters on the end go first, then vowels
go before consonants, and so on. So there are rules of abbreviation that could be
exploited to automatically expand abbreviations typed by a user.

M D o on on o v — .
. [o f
L RS

\J

RO

4.3. Consistency Connections Between Names

With long names, it can be hard work to change a subname in every procedure in
which it occurs. Simple methods (like pointers in the symbol table) could link together
F all occurrences.

. 4.4. Diagnostics From Names

° Since names are a rich source of information about what a program is trying to do,
they should be exploited in debugging. This is hard in general, but is possible if a user
supplies information to a compiler or interpreter about their conventions (or if the
f user agrees to follow certain conventions). For instance, nonanalogous structure for
e one member of a family of procedures could be noted by a warning diagnostic.

AP ML AL Sl pul M A B Ol A AR Shage. hae i B Bt Mgl Mias 2y St ol Sty S S A il 1 B A% are & W At 0o B % B -Saere n b -

- 11 -

5. CONCLUSIONS

I have put forth some ideas about naming in programming, mostly relating to the
naming of procedures and how to make good naming easier. I discussed some of the
serious obstacles in programruiug languages to good naming. Good naming was then
. illustrated with an example of some "families" of procedures that interrelate, and how
- their names can reflect their relationships. 1 then suggested a few ways to improve
' programming languages to support this kind of good naming. These comments apply
to any programming language, but are particularly directed towards Logo since nam-
E ing is emphasized in most pedagogical aids to the language.

- 6. REFERENCES

Abelson, H. (1982). Logo for the Apple II. Peterborough NH: BYTE/McGraw-Hill, |

;- 1982.

Goldberg, A. and Robson, D. (1983). Smalltalk-80: The Language and Its Implementation.
Reading MA: Addison-Wesley, 1983,

L Goldenberg, E. P. (1976). Children’s strategies for naming procedures. Unpublished
[Logo Working Paper #58, MIT Logo Project, Cambridge MA.

3

S

a Rowe, N. C. (1980). Inductive common ground tutoring. Computers and Education, {, 2,
li[177-187.
b

Rians A on R A un ue g

3

T
Fiit]

-
A - - M M ‘e - et ‘ N ° N " *
. . . . L . .- te - . - Y
N - e . » . - . e
F Ca - R T PR . . . B T T WS .
Vv PO U TSRO WO DL LI oL ki s Dt ol PP W e . - PR SR T P S A R N

P . - ™
LinAn vy 3 A

50 - AR~

yffTw—-v'v
.

>
- .

At S i

P oin Sun s ag
.

'''''

AAenl aa aE

-12-

ITEM ~———on PROPERTY — = SUBSET ~~— IDENTITY

RUN.ITEM .—— RUN.PROPERTY RUN

FIRST.N.ITEMS ——— FIRST.N.PROPERTIES

RANDOM.ITEM

I NVERSE. ITEM IN VERSEX’ROPERTY

Figure 1

Land WAt Sl el Sl A

P

RANDBM.PROPERTY- RANDOM.SUBSET~ RANDOM

Mol Al Al

Chit A A e S A R N AN P il SN SPIC L S i T ST

DISTRIBUTION LIST

Defense Technical Intormation Center
Cameron Station
Alexandria, VA 22314

Dudley Knox Library

Code 0142

Naval Postgraduate School
Monterey, CA 93943

Office of Research Administration
Code 012A

Naval Postgraduate School
Monterey, CA 93943

Chairman, Code 52Hq

Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

Associate Professor Neil C. Rowe, Code 52Rp
Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943

Dr. Robert Grafton

Code 433

Office of Naval Research
800 N. Quincy

Arlington, VA 22217

Dr. David W. Mizell
Office of Naval Research
1030 East Green Street
Pasadena, CA 91106

AT A St g S Sad and ek M Snd s
e . W SR e TR Te,

40

25

r
-

RS R iA B

- v T T e W TN Y TE NN T YT WK N S e m vy mwe
AR A At et Ts T S Al S

2-85

